In all the examples which follow, 'sharpened' $|F|^2$ values were used in the calculation of the O-functions. $O(X_0Z_0)$ was calculated using the relative coordinates of the eleven atoms in the plane of the purine residue in deoxyadenosine. The relative coordinates were those obtained from the determination of the molecular orientation (Watson, Sutor & Tollin, 1965). The space group is $P2_1$. The map obtained is shown in Fig. 1(a). The expected positions of peaks due to atoms separated by b/2 are marked in the map. The largest remaining peak is that which determines the position of the origin. The map of $Q(X_0Z_0)$ obtained using the relative coordinates for the atoms of the sugar residue in deoxyadenosine is shown in Fig. 1(b). In this case only eight out of a total of twenty heavy atoms in the molecules were used. The coordinates used were the final coordinates from the refined structure with an arbitrary change of origin to x=0.2, z=0.3. In this case there are no atoms separated by half in their fractional y coordinates. The function $Q(Y_0)$ was calculated from relative coordinates for pyrimidine obtained by taking the final published coordinates (Wheatley, 1960) and giving them an arbitrary shift of origin to x = -0.15, y = -0.3. The space group is $Pna2_1$, $Q(Y_0)$ was used to define the position of the molecule relative to the a-glide plane. Only the fifty largest 'sharpened' $|F|^2$ values were used. The resulting map is shown in Fig. 2 with the origin shifted to $y = -\frac{1}{4}$ to allow for the fact that the a-glide occurs at $y = \frac{1}{4}$. The dotted vertical line represented the correct answer of y = -0.3. The results show that even with this small amount of data the origin position is well defined. It can also be seen that the determination of the y coordinate is independent of the fact that at this stage the x coordinate of the arbitrary origin is not known. In all these examples the error in determining the origin position was less than 0.05 Å. These Q-functions have also been used to determine the structure of 4-acetyl-2'-fluorobiphenyl (Tollin, Young & Sutherland, 1965). The author wishes to thank Professor W. Cochran, F.R.S., Dr M.G. Rossmann and Dr P. Main for their advice and criticism. ### References Buerger, M. J. (1959). Vector Space. New York: John Wiley. HOPPE, W. (1957). Z. Elektrochem. 61, 1076. LIPSON, H. & COCHRAN, W. (1953). The Determination of Crystal Structures. London: Bell. Nordman, C. E. & Nakatsu, K. (1963). J. Amer. Chem. Soc. 85, 353. Tollin, P. & Cochran, W. (1964). Acta Cryst. 17, 1322. Tollin, P., Young, D. W. & Sutherland, H. (1965). Paper presented at A.C.A. meeting Gattlinburg, Tennessee. VAND, V. & PEPINSKY, R. (1956). Z. Kristallogr. 108, 1.WATSON, D. G., SUTOR, D. J. & TOLLIN, P. (1965). Acta Cryst. 19, 111. WHEATLEY, P. G. (1960). Acta Cryst. 13, 80. Fig. 1. $Q(X_0Z_0)$ for deoxyadenosine (a) using purine relative coordinates (b) using sugar relative coordinates. + indicates false peaks. × indicates expected positions. Fig. 2. $Q(Y_0)$ for pyrimidine. Dotted line indicates expected peak position. Acta Cryst. (1966). 21, 614 The crystal structure of bis(N-2-hydroxyethylsalicylaldiminato)copper (II). By E. R. Boyko, Chemistry Department, Providence College, Providence, Rhode Island, U.S.A. and D. Hall, Mary E. Kinloch and T. N. Waters. Chemistry Department, University of Auckland, New Zealand (Received 7 May 1965) There is considerable current interest in the crystal structures of N-substituted salicylaldiminato complexes of transition metals (see Table 5, Frasson, Panattoni & Sacconi, 1964; Fox, Lingafelter, Orioli & Sacconi, 1963; Wei, Stogsdill & Lingafelter, 1964; Cheeseman, Hall & Waters, 1965). Attention has been mainly focused on the dimensions and stereochemistry of the molecule, as in all but the simplest such molecules there appears to be little molecular interaction. The substituents in compounds studied to date have been alkyl or phenyl groups, and it is of interest to consider the influence on such structures of groups with hydrogen-bonding potential. In this connection studies of the crystal structure of bis(N-2-hydroxyethylsalicylaldiminato)copper(II) were begun both at Providence and Auckland, the results from one of these being announced at the Rome Congress (Boyko, 1963). It transpired that the two investigations were similar in scope and achievement, and a joint publication has been decided upon. # Experimental The compound was prepared by warming stoichiometric quantities of bissalicylaldehydatocopper(II) and ethanolamine in 50% aqueous methanol, and recrystallized from ethanol as dark green needles, m.p.176°. Chemical analysis verified the resulting composition. The constants for the monoclinic unit cell were obtained from NaCl-calibrated Weissenberg photographs around **b** and **c** as $a=18.66\pm0.04$, $b=4.71\pm0.01$, $c=19.99\pm0.04$ Å, $\beta=97.8\pm0.1^{\circ}$. The density was measured by a gradient density procedure as $1.48~\rm g.cm^{-3}$, as compared with the calculated density of Table 1. Atom coordinates and temperature factors | Atom in | | | | | Atom in | | | | | |--------------|----------------|---------|---------|---------------------------|------------|---------------|--------|---------|--------| | molecule A | X | y | z | $\boldsymbol{\mathit{B}}$ | molecule B | x x | ν | z | В | | Cu | 0 | 0 | 0 | 4∙5 Ų | Cu | $\frac{1}{2}$ | 1/2 | - 0 | 4·0 Å2 | | O(1) | -0.0049 | -0.1437 | 0.0863 | 3.8 | O(1) | 0.5732 | 0.5245 | 0.0761 | 3.4 | | N | -0.0885 | 0.2259 | 0.0066 | 4.3 | N | 0.4513 | 0.2052 | 0.0483 | 4.5 | | C(1) | -0.1301 | 0.2196 | 0.0532 | 3⋅8 | C(1) | 0.4766 | 0.1061 | 0.1086 | 3.0 | | C(2) | -0.1187 | 0.2596 | 0.1094 | 3.7 | C(2) | 0.4577 | 0.8014 | -0.1517 | 3.9 | | C(3) | -0.0588 | -0.1357 | -0.1261 | 4.7 | C(3) | 0.4130 | 0.5886 | -0.1358 | 3.3 | | C(4) | -0.0491 | -0.3195 | 0.1841 | 5.2 | C(4) | 0.3478 | 0.5001 | -0.1791 | 4.5 | | C(5) | -0.1058 | -0.3223 | -0.2250 | 4.9 | C(5) | 0.3299 | 0.6501 | -0.2436 | 4.5 | | C(6) | -0.1675 | -0.1508 | 0.2121 | 5.4 | C(6) | 0.3750 | 0.8516 | -0.2626 | 4.5 | | C(7) | -0.1723 | 0.0281 | 0.1572 | 4·4 | C(7) | 0.4397 | 0.9318 | -0.2173 | 4.1 | | C (8) | -0.1117 | 0.4511 | -0.0472 | 4.3 | C(8) | 0.3854 | 0.0479 | 0.0743 | 3.7 | | C(9) | -0.1597 | 0.2882 | -0.1104 | 3.1 | C(9) | 0.3154 | 0.2460 | 0.0110 | 3.7 | | O(2) | -0.2320 | 0.2293 | -0.0930 | 3.8 | O(2) | 0.2970 | 0.2767 | 0.0801 | 4.2 | ### Estimated standard errors Fig. 1. (a) Bond lengths (Å). (b) Bond angles (°). 1·495 g.cm⁻³ for 4 molecules per unit cell. Systematic absences indicated the space group $P2_1/c$. Intensities were measured visually from Weissenberg photographs of the h0l, h1l and h2l layers. The approximate dimensions of the crystal employed were $0.1 \times 0.4 \times 2$ mm. No correction for absorption was made. The shape of the crystals precluded satisfactory photography other than about **b**, and the interlayer scaling constants were regarded as additional parameters during refinement. A comparison of the 600 observed structure factors from the two independent determinations showed no serious discrepancies and only one set (Providence) was employed in the refinement. #### Structure determination The Patterson function showed dominant maxima at positions $(\frac{1}{2},\frac{1}{2},0)$. $(\frac{1}{2},0,\frac{1}{2})$ and $(0,\frac{1}{2},\frac{1}{2})$, whence it was deduced that the copper atoms either occupy general positions at $(\sim 0.25, \sim 0.00, \sim 0.25)$ or the two independent sets of special positions at (0,0,0) and $(\frac{1}{2},\frac{1}{2},0)$. Heavy atom phased Fourier syntheses could only be interpreted on the latter assumption, i.e. that two independent centric molecules exist in the structure. Location of the light atoms and subsequent refinement followed conventionally, although the details of procedure in the two investigations differed somewhat. The final refinement was by a least-squares procedure in which atoms were permitted individual isotropic temperature factors. The atomic form factors employed were from Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) and the weighting factors used were w=1 for $F_0 \le 30$, $w=30/F_0$ for $F_0 > 30$. Further refinement was attempted with anisotropic temperature factors, but little improvement resulted and the isotropic refinement was preferred for its smaller number of parameters. The overall reliability index (observed structure factors only) is 0.090; individual values for separate layers are 0.091, 0.087 and 0.095 for h0l, h1l, and h2l respectively. Atom coordinates and temperature factors are listed in Table 1, together with the estimated standard errors calculated from the least-squares residuals. ## Discussion The bond lengths and angles in the two independent centric molecules are shown in Fig. 1. In general they are similar, although the difference in the length of the bonds C(6)–C(7), 0.079 Å, and of Cu–O, 0.053 Å, would appear significant by normal criteria. It is unlikely that this is true, and more probable that the standard errors in Table 1 are underestimates. The excessively long values for both of the bonds C(8)–C(9) would support this conclusion. No further discussion of the individual dimensions is then profitable, other than to note the general similarity to those of the chemically related molecules bis-(N-methylsalicylaldiminato)copper(II) (Lingafelter, Simmons, Morosin, Scheringer & Freiburg, 1961) and bis-(N-phenylsalicylaldiminato)copper(II) (Wei et al., 1964). The two molecules in this study do, however, appear to differ meaningfully with respect to planarity. The mean planes (Schomaker, Waser, Marsh & Bergman, 1959) through the molecules (other than the side chains) and the mean planes through a benzene ring were calculated. For molecule A the approximation to overall planarity is poor; the benzene ring is effectively planar, however, and with the exception of the nitrogen (deviation 0.125 Å), the remaining atoms of the salicylaldimine group are coplanar with it. The molecule is bent, or stepped, so that the planes of the two benzene rings are separated by 0.62 Å, this situation being similar to that observed in bis-(N-phenylsalicylaldiminato)copper(II). On the other hand molecule B can, with the sole exception of the oxygen atoms (deviation 0.092 Å), be described as coplanar within the accuracy Table 2. Observed and calculated structure factors | huo | | <u>n02</u> | | <u>504</u> | | <u>h06</u> | | h08 | | | |---|----------------------------|--|--|--|----------------------------|--|-------------------------|---|--|--| | 1399 1828
216 -244
216 -217 | 0 | 1605 1565
1252 1392
1204 1222 | 0
2
3 | 822 772
661 818
516 450 | 0
1
2 | 127 220
243 144 | 1 | 952 964
160 132
660 725
456 -408 | | | | 927 842 | 3
4
5 | 862 1050 | 5 | 504 -563
780 866 | 3 | 1320 1335
169 -227
213 340 | 3 | 660 725
456 -408
410 396 | | | | 537 506 | ,
, | 603 649 | 7 8 | 786 -753 | 5 | 226 -260 | 6 | 410 396
756 718
229 -214 | | | | 60b 552 | 8
10 | 515 420
1113 1097 | 10 | 900 852
172 70
931 839 | 7 8 | 226 -260
679 636
231 -298
271 314 | 8
10 | 534 515 | | | | 562 487
250 196
322 261 | 11 | 1126 1123
290 -326
662 651 | 11
12 | 194 156
420 403 | 9 | | 12
-1 | 325 318
238 192
303 -251 | | | | 404 343
406 344 | 13
16 | 201 148
378 324 | 16 | 418 430 | 12
14 | 325 365
357 369
218 159
187 297 | -2
-3 | 674 749
535 559 | | | | <u>hu 10</u> | 18
-2
-3 | 208 178
873 982
1282 -1397 | -1
-2
-3
-5 | 869 884
571 651
675 642
183 -186 | 15 | 187 297
131 -87
494 592 | -4 | 375 444
231 -195 | | | | 840 901
371 347 | -4 | 1138 1296 | -6 | 440 541 | -1
-2
-3 | 292 285 | -6
-7
-8
-9 | 364 424
502 -511 | | | | 816 795
1031 934 | -5
-6 | 450 -399
194 295 | -7
-8
-9 | 214 220
462 478 | -4
-6
-7 | 612 677
784 767 | -8
-9 | 502 -511
627 669
297 -375
1054 943 | | | | 31B 326
192 -221 | -7
-8 | 262 280
706 654 | -10 | 194 198
611 554
170 155 | -8 | 749 -722
290 350 | -10
-12 | 902 865 | | | | 409 434
221 -252
500 496 | -9
-10 | 381 373
821 767
173 178 | -11
-12
-14
-16
-17
-18 | 170 155
344 350
504 390 | -9
-10 | 599 -565
377 418
286 307 | -16 | 318 299
<u>h0 18</u> | | | | 500 496
392 379
278 248 | -10
-11
-13
-14 | 248 248 | -14 | 504 390
242 229
574 -577 | -10
-11
-12 | 286 307
483 485
258 243 | 0 | 218 136 | | | | 223 240 | -14 | 736 690
418 325 | -17 | 311 294 | -18 | 269 228 | -2 | 306 325
226 224
307 -344
329 -329
325 384 | | | | 223 242
353 268
717 697 | 0 | <u>h0 12</u>
806 782 | -20 | 188 161
h0 14 | -20 | 185 081
h0 16 | -3
-5
-8 | 307 - 344
329 - 329
325 384 | | | | 218 -179
800 846 | 1 2 | 368 -321
337 377
357 387 | 0 | 499 483 | 0 | 300 300 | -8 | h0 20 | | | | 662 684 | 3 | 357 387 | 2 | 221 -227
548 548
238 214
295 278
335 296 | 2
3
-2 | 325 338
306 326
406 376 | 0 2 | 252 237
252 261 | | | | 184 142
522 521
600 535 | 6 | 1037 941
586 610
201 -151 | 4
7
10 | 295 278
335 296 | | 520 475
321 -343 | • | h1 3 | | | | 362 353
305 247 | 8
10 | 288 283 | 12
-2 | 473 396 | -6
-7 | 272 290
224 -188 | 0 | 79 -56
625 694
812 745
1267 1322
594 534
558 574 | | | | h1_0 | 12
+1 | 522 414
170 172
229 249
494 536
250 303 | -4
-6
-8 | 606 603
431 409
303 270 | -8
-10 | 249 220
318 336 | 2 | 79 -56
625 694
812 745
1267 1322
594 534
558 374
174 -182
372 452
569 604
562 512
441 386
297 237
428 523 | | | | 286 -291
523 518 | -2
-3 | 229 249
494 536 | -8
-10 | 303 270
545 523 | | <u>h1_2</u> | \$ | 594 534
558 574 | | | | 335 362
182 -168
642 591 | -4
-6
-8 | 250 303
450 451 | | <u>h1 1</u> | 0
1
2 | ./2 -118
689 -927 | , | 174 -182
372 452 | | | | 321 301 | -10 | 450 451
413 491
616 611 | 3 | 664 776
665 844 | 3 | 1395 -1343
318 -308
154 -190 | 9
11
13 | 569 604
562 512 | | | | 195 -218
140 -117
161 194 | -12
-13 | 616 611
272 286
276 292
366 360 | 5 | 664 776
665 844
92 -51
697 797
141 177 | 5 | ./2 -118
689 -927
1395 -1343
318 -308
154 -190
472 -482
118 -130 | 13 | 441 386
297 237 | | | | h0 4 | -14 | 366 360
hl 5 | 5 | 640 667
437 365 | 7 8 | 720 700 | 15
-1
-2 | 929 -862 | | | | 400 152 | 0 | 100 -99 | 8
9 | 366 556 | 10 | 113 -136
161 138
240 -281 | -3
-4 | 1712 1742
1062 -1037 | | | | 400 357
333 240
85 44
290 -256
925 -856 | 2 | 273 361
228 -209
648 654 | 10
11 | 137 -161
751 654
622 504
291 242
153 62 | 12
-1
-2 | 240 -281
1135 -1104 | -5
-7 | 1409 1460
568 618
248 272
434 480
330 269 | | | | 633 -590 | 3
5
6 | 648 654
1039 973
297 -236
715 696
320 -326 | 15
16 | 291 242
153 62 | -5
-6 | 1135 -1104
1516 1581
567 -631
178 166 | -8
-9
-11 | 434 480
330 269 | | | | 105 81
113 -91 | 7 8 | 715 696
320 -326 | 17 | 214 207 | -7
-8 | 242 -240
252 -252 | -13
-15 | 421 366
500 436 | | | | | 11 | 394 424 | -3 | 666 828 | -12
-14 | 214 -222 | -17 | 292 239 | | | | 138 -138
137 132
276 -291
193 -151
187 -138
239 272
328 285 | 13
15 | 386 341
217 194 | -5
-6
-7 | 891 1016
227 365
506 578
495 493
172 163 | -15 | 180 195 | 0 | <u>h1 7</u> | | | | 187 -138
239 272 | -1
-3 | 364 436
497 585 | -9 | 506 578
495 493
172 163 | 0 | <u>h1 6</u>
193 198 | 1 2 3 | 270 258
710 674
94 68
613 583
404 -421
677 591 | | | | | -4
-5 | 305 -342
1158 1243 | -10 | 172 163
669 598 | 1
2
3 | 193 198
244 217
154 -152 | 4 | 613 583
404 -421
677 591 | | | | 205 196
268 -291
324 -316 | -7 | 309 -312
1105 1204 | -11
-12
-13 | 669 598
153 -167
810 699 | 4 | 763 -253
96 94 | 5 | 677 591
330 -310 | | | | 324 -316
127 -142 | -7
-8
-9 | 1105 1204
299 -319
240 318 | -14 | 194 -265 | 6 | 346 -309
416 403
301 286 | 7 | 330 -310
473 470
303 270 | | | | <u>h1 8</u> | -11
-13 | 342 363
454 445 | -17 | 275 211
61 10 | 12 | 159 -142 | 11 | 330 -310
473 470
303 270
372 372
434 386 | | | | 776 704
98 -96
245 223
458 -401
134 159 | 0 | <u>h1 9</u>
425 373 | 3 | 200 189 | - 1
- 3 | 160 -146
316 126 | -1 | 249 211 | | | | 458 -401 | 1 2 | 707 646
263 273
703 697 | 9 | 268 291
197 193
223 -201 | -5 | 276 261
424 -449
180 167 | -2
-3 | 160 -171
802 893 | | | | 134 159
262 249
165 154
390 400 | 3
5
7 | 703 697
522 512
523 479 | -1
-2
-5 | 268 291
197 193
223 -201
419 423
430 426
175 -213 | -7
-8
-10 | 180 167
166 -115
357 -391 | -3
-5
-7 | 760 818
160 -171
802 893
431 484
403 425
491 550 | | | | 390 400
445 436 | 9 | 566 502 | -7 | | -10 | hl 11 | -9
-11 | 491 550
419 433 | | | | 445 436
171 193
173 202
124 110 | 11
-1
-3 | 238 203
608 567 | | <u>h1 15</u>
429 391 | 1 3 | 729 688
664 617
522 483
407 375
147 201 | | <u>h1 12</u> | | | | 124 110
197 -185 | -3
-5 | 603 564
373 434
167 -153 | 3 | 294 308 | 3 | 522 483
407 375 | 5 | 146 -149
207 -228 | | | | h1 13 | -5
-6
-7
-9 | 494 498 | 7 | 378 347 | 9 | 147 201
278 264
350 352 | 0
5
8
10
-3 | 146 -149
207 -228
254 270
263 247
173 185
181 -232 | | | | 444 460
367 371
187 231
299 277 | -11
-13 | 481 555
412 458
279 315
218 267 | -1
-3
-5
-9 | 177 202
446 419
548 534
224 244
188 202 | 10
-1 | 278 264
350 352
684 614
463 477 | -4 | 181 -232 | | | | 367 371
187 231
299 277 | -15 | | -5
-9 | 224 244
188 202 | -5 | | 2 | 181 -232
h2 1
226 192 | | | | 724 679
501 512
484 490 | 1 | 143 157 | -11 | 359 368
<u>h1 16</u> | -1
-3
-5
-7
-8 | 479 495
189 270
534 549 | 3
4
5 | 134 -149
170 -189
117 -121
170 -192
335 313
462 -468
90 -85 | | | | 460 448 | -1 | 143 157
370 -357
151 -179
229 272 | -5 | 215 -252 | -11 | 504 505
415 394
263 250 | 10 | 170 -192 | | | | 363 382
362 353
233 270 | -, | h2 3 | | <u>61 17</u> | -13
-15
-17 | 263 250
196 194 | -2
-3
-4 | 462 -468
90 -85 | | | | hZ 2 | 1 | 270 -310 | -1
-3 | 405 379
334 345 | | h2 0 | -6 | 249 -265 | | | | 365 444
547 560 | 3 | 152 -149
414 -413
166 -193 | 0 | <u>h2 4</u>
482 535 | 2 5 | 1149 983
408 384 | 0 | <u>h2 6</u>
850 867 | | | | 547 560
694 730
204 -163 | 5 | 120 -140
167 -211 | 2 | 390 435 | 8 | 408 384
527 555
710 674
528 486
472 431 | 0
1
2 | 850 867
246 -246
331 -325
467 535
430 430 | | | | 254 310 | -1 | 339 -283 | 5 | 818 859
602 647 | 10
12 | 4/2 431 | 5 | 467 535
430 430 | | | | 467 449 | -3
-4
-5 | 557 +510
133 -158
386 -317 | 6
8 | 413 413
506 587 | 13 | 328 -361
337 297
214 240 | 6 | 714 659 | | | | 187 -260 | -5
-6 | 386 -317
237 224 | 10 | 308 -211
349 323 | 16 | | ,
8 | 245 239
441 477
241 272 | | | | 300 292
610 -548
1422 1102 | 0 | 521 502 | -1
-2 | 364 -282
876 767
122 93 | 0 | <u>h2 5</u>
185 184 | 12 | 255 303
203 226
130 160 | | | | 1422 1102
148 107
828 764
256 240 | 1 2 | 275 -256
357 566 | -2
-3
-4 | 122 93
1056 1049 | 3 | 231 -285
338 -361 | -1
-3
-4 | 693 696 | | | | 256 240
527 591 | 6 | 430 482 | -5
-6
-7
-8 | 167 -177
800 750 | 5 | 143 -167
306 -114 | -6
-7
-8 | 914 820 | | | | 527 591
658 633
355 294 | 8 | 442 459 | -8
-12 | 122 93
1056 1049
167 -177
800 750
169 -145
597 571
388 348 | -1
-2
-3
-4 | 219 -218
417 359 | -10 | 860 800 | | | | 401 344 | 10
-1 | 243 221
189 214 | | h2 9 | -3
-4 | 112 156
237 -214
299 318 | -12 | 270 270 | | | | <u>h2 7</u>
216 232 | 10
-1
-2
-4
-5 | 576 632
599 617
168 206 | 1
6
8 | 201 221
213 247
220 294 | -5
-6
-7 | 485 -448 | -3 | <u>h2 11</u>
164 157 | | | | 216 232
259 252
368 372 | -6
-8 | 344 362 | -10 | 220 294
294 260 | -7 | 175 171
<u>h2 10</u> | | h2 12 | | | | 184 202 | -8
-10 | 460 536
444 496 | _ | <u>h2 16</u> | 0 | 382 373 | 0 | 246 275
497 582 | | | | 248 206
156 -147
171 190 | 0 | <u>h2 14</u>
286 271 | 0
4
~2 | 266 235
273 331
245 248 | 2 | 401 -430
738 759
363 309 | 6 | 357 299
244 271 | | | | 200 -215
307 257 | 2 | 352 391 | -6 | 286 277 | 6 | 363 309
360 340
354 410 | -1
-2 | 191 -196
271 318
230 218 | | | | 62 13 | -1
-2 | 396 349
216 -219
274 291 | -2 | 226 219
284 270 | -1 | 159 -116
616 620 | -4
-5
-6
-8 | 225 321 | | | | 195 -201
254 -283 | -4
-5 | 286 305
203 266 | -6 | 284 270 | -4
-6 | 415 456
406 452 | -8
-12 | 474 568
413 426
257 282 | | | | | -12 | 323 313 | | | -8 | 402 398 | -12 | 257 262 | | | of these observations. Alternatively, consideration of the benzene rings alone would again suggest that it be described in terms of individually planar but not coplanar salicylaldimine groups, separated by 0.2 Å. The experimental accuracy is not sufficient to distinguish a planar molecule from one that is slightly stepped. These variations between A and B must presumable stem from packing effects, and would support the contention (Cheeseman, Hall & Waters, 1965) that the resistance of such molecules to deformation from overall planarity is rather less than has often been supposed. The coordination is square planar, the closest contacts made by the copper atoms in the octahedral axial direction being in each case to atoms C(8) of adjacent molecules along [010], and of length 3·37 and 3·39 Å for molecules A and B respectively. The molecules are so oriented that the ethanolic hydroxyl groups of the independent molecules make contacts of 2·65 and 2·70 Å. The structure may then be described in terms of two-dimensional sheets of hydrogen-bonded molecules, parallel to (001). The compactness of this structure, resulting from the hydrogen bond formation, may be seen by comparing the density, 1·495 g.cm⁻³, with the values of 1·405 for bis-(N-ethylsalicylaldiminato)copper (Clark, 1964) and 1·34 for bis-(N-butylsalicylaldiminato)copper (calculated from Frasson et al., 1964). We wish to thank Dr P.A. Vaughan of Rutgers University for his assistance with the refinement involving the anisotropic temperature factors. #### References BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955) Acta Cryst. 8, 478. Воуко, Е. R. (1963). Acta Cryst. 16, A64. CHEESEMAN, T. P., HALL, D. & WATERS, T. N. (1965). Nature. Lond. 205, 494. CLARK, G. C. (1964). M.Sc. Thesis, p. 7. Univ. of Auckland, New Zealand. Fox, M. R., Lingafelter, E. C., Orioli, P. L. & Sacconi, L. (1963). *Nature*, *Lond*. 197, 1104. Frasson, E., Panattoni, C. & Sacconi, L. (1964). *Acta Cryst.* 17, 477. LINGAFELTER, E. C., SIMMONS, G. L., MOROSIN, B., SCHERINGER, C. & FREIBURG, C. (1961). *Acta Cryst.* 14, 1222. SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). *Acta Cryst.* 12, 600. Wei, L., Stogsdill, R. M. & Lingafelter, E. C. (1964). Acta Cryst. 17, 1058. Acta Ctyst. (1966). 21, 617 Refinement of the L-alanine crystal structure. By J.D. Dunitz & R.R. Ryan, Organic Chemistry Laboratory, Swiss Federal Institute of Technology, 8006 Zürich, Switzerland (Received 11 April 1966) Shortly after we had completed the measurement of a set of three-dimensional intensities for a crystal of L-alanine, we learned that the crystal structure had recently been determined by Simpson & Marsh (1966). In order to test the constancy of the molecular parameters derived from different data sources, we have carried out a series of full-matrix least-squares refinements with our data. We present here the comparison of our results with those of Simpson & Marsh (SM). Our intensity measurements were made with a Hilger-Watts linear diffractometer, using Mo radiation with SrO/ZrO_2 balanced filters. The intensities of 522 independent reflexions were recorded in the layers hkO-hk6 and converted to relative F values in the usual way. Absorption corrections were not deemed necessary. Starting with SM's published parameters for the C, N and O atoms (hydrogen atoms were included in the structure factor calculations but not refined), our analysis leads to the results shown in Tables 1 and 2. The agreement is good as far as the chemical significance of the results is concerned; however, the differences, although small, seem statistically significant on the basis of the estimated standard deviations cited by SM. (We have not calculated the least-squares standard deviations of our parameters, but they should be of about the same order of magnitude as those of SM.) On the basis of tests using the function R''= $[\Sigma w_i(F_o - F_c)^2/\Sigma w_iF_o^2]^{\ddagger}$ (Hamilton, 1965) we find that our data reject the SM model at better than 0.005 level of significance, while the SM data reject our model at about the same level. Table 1. Positional parameters (×104) and bond lengths | | | | _ | | | | | | | |------|-------------------|-------------------|------------------|-------------|----------|------------------------|-------------------|--------------|-------------------| | | x_{DR} | x_{SM} | $\sigma_{ m SM}$ | y_{DR} | y_{SM} | σ_{SM} | z_{DR} | $z_{\rm SM}$ | $\sigma_{\rm SM}$ | | O(1) | 7278 | 7287 | 3 | 843 | 843 | 1 | 6280 | 6283 | 3 | | O(2) | 4499 | 4501 | 3 | 1856 | 1850 | 1 | 7604 | 7609 | 3 | | C(1) | 5606 | 5606 | 4 | 1413 | 1418 | 1 | 6023 | 6016 | 4 | | N | 6565 | 6560 | 3 | 1375 | 1382 | 1 | 1853 | 1856 | 3 | | C(2) | 4764 | 4769 | 4 | 1611 | 1612 | 1 | 3559 | 3563 | 4 | | C(3) | 2744 | 2746 | 5 | 919 | 915 | 2 | 3021 | 3025 | 5 | | | | Bond
C(1)-O(1) | | $d_{ m DR}$ | | d_{SM} | | | | | | | | | 1·239 Å | | 1·247 Å | | | | | | | C(1)-O(2) | | 1.257 | | 1.256 | | | | $$\frac{R'' \text{ (SM data: our model)}}{R'' \text{ (SM data: SM model)}} = \frac{0.091}{0.070} = 1.30$$ $$\frac{R'' \text{ (our data: SM model)}}{R'' \text{ (our data: our model)}} = \frac{0.066}{0.049} = 1.34.$$